Molecular breath profile of acute COPD exacerbations
Sarah Basler, Noriane A Sievi, Felix Schmidt, Kai Fricke, Alexandra Arvaji, Jonas Herth, Diego M Baur, Pablo Sinues, Silvia Ulrich and Malcolm Kohler
Metabolic changes in the linoleate, tyrosine, and tryptophan pathways during AECOPD were predominant. Significant metabolic changes occur during COPD exacerbations, predominantly in the linoleate, tyrosine, and tryptophan pathways, which are all linked to inflammation. Real-time exhaled breath analysis enables a good prediction of AECOPD compared to stable state and thus could enhance precision of AECOPD diagnosis and efficacy in clinical practice.
Diagnostic potential of breath analysis – Focus on the dynamics of volatile organic compounds
Wolfram Miekisch, Pritam Sukul, Jochen K. Schubert
As dynamic VOC profiling provides valuable information on kinetics of markers and confounders, it offers huge and so far unexplored potential for physiological, metabolic, therapeutic and environmental monitoring. Driven by new and innovative technologies such as real time mass spectrometry and highly specific sensor systems, future applications may range from home care to ICU monitoring
Ozone Oxidation of the Flame Retardant BDE-209: Kinetics and Molecular-Level Analysis of the Gas-Phase Product Compounds
Siyu Liu, Jinli Xu, Yingxin Xie, Bowen He, Qingxin Deng, Yanan Hu, Jiangping Liu, Davide Vione, Xue Li, Sasho Gligorovski
Real-time measurements of the gas-phase product compounds formed by the reaction of O3 with BDE-209 were performed with a SESI-HRMS in both positive and negative ionization modes…
Exhalation metabolomics: A new force in revealing the impact of ozone pollution on respiratory health
Chen Tao, Peter Mettke, Yaru Wang, Xue Li, Ligang Hu
Highlights
Near-surface ozone pollution has a significant impact on respiratory health.
Lung microenvironment is involved in respiratory health effects of ozone pollution.
Exhalation metabolomics provides a new method to explore the respiratory health effects of ozone pollution.
Exhalation metabolomics could be a potential basis for concentration limits in ozone pollution control.
Tracking indoor volatile organic compounds with online mass spectrometry
Wei Liu, Li Zhou, Wenting Yuan, Ling Ruan, Xinkai Wang, Yucong Guo, Zhouqing Xie, Qifan Liu, Chen Wang
This review article summarizes the principles of different online mass spectrometry techniques and their application to indoor VOC measurements. The sources, emission characteristics, and chemical compositions of primary indoor VOCs are discussed. Recent advances in the fundamental understanding of chemical transformations and formation mechanisms related to secondary indoor VOCs are also discussed
Real-time measurements of product compounds formed through the reaction of ozone with breath exhaled VOCs
Xin Xu, Hongwei Pang, Chao Liu, Kangyi Wang, Gwendal Loisel, Lei Li, Sasho Gligorovski, Xue Li
Human presence can affect indoor air quality because of secondary organic compounds formed upon reactions between gaseous oxidant species, e.g., ozone (O3), hydroxyl radicals (OH), and chemical compounds from skin, exhaled breath, hair and clothes. We assess the gas-phase product compounds generated by reactions of gaseous O3 with volatile organic compounds (VOCs) from exhaled human breath…
The Effect of Human Occupancy on Indoor Air Quality through Real-Time Measurements of Key Pollutants
Huifan Deng, Xin Xu, Kangyi Wang, Jinli Xu, Gwendal Loisel, Yiqun Wang, Hongwei Pang, Pan Li, Zebin Mai, Shichao Yan, Xue Li,Sasho Gligorovski
The primarily emitted compounds by human presence, e.g., skin and volatile organic compounds (VOCs) in breath, can react with typical indoor air oxidants, ozone (O3), and hydroxyl radicals (OH), leading to secondary organic compounds…
Daytime SO2 chemistry on ubiquitous urban surfaces as a source of organic sulfur compounds in ambient air
Huifan Deng, Pascale S. J. Lakey, Yiqun Wang, Pan Li, Jinli Xu, Hongwei Pang, Jiangping Liu, Xin Xu, Xue Li, Xinming Wang, Yuzhong Zhang, Manabu Shiraiwa, and Sasho Gligorovski
The reactions of sulfur dioxide (SO2) with surface-bound compounds on atmospheric aerosols lead to the formation of organic sulfur (OS) compounds, thereby affecting the air quality and climate. Here, we show that the heterogeneous reaction of SO2 with authentic urban grime under near-ultraviolet sunlight irradiation leads to a large suite of various organic compounds including OS released in the gas phase…
Interfacial Ozone Oxidation Chemistry at a Riverine Surface Microlayer as a Source of Nitrogen Organic Compounds
Yiqun Wang, Huifan Deng, Pan Li, Jinli Xu, Gwendal Loisel, Hongwei Pang, Xin Xu, Xue Li, Sasho Gligorovski
Little is known about the processes of formation of the secondarily formed N-containing organics in the atmosphere. Here, we investigated the formation of gas-phase organic compounds, including N-containing organics, through interfacial oxidation chemistry of gaseous O3 with an authentic riverine surface microlayer (SML) by using a high-resolution quadrupole Orbitrap mass spectrometer coupled to a secondary electrospray ionization source…
A Novel Insight into the Ozone–Skin Lipid Oxidation Products Observed by Secondary Electrospray Ionization High-Resolution Mass Spectrometry
Jiafa Zeng, Majda Mekic, Xin Xu, Gwendal Loisel, Zhen Zhou, Sasho Gligorovski, Xue Li
we evaluate the secondary organic compounds formed through heterogeneous reactions of gaseous O3 with hand skin lipids by using a high-resolution quadrupole Orbitrap mass spectrometer coupled to a commercial secondary electrospray ionization (SESI) source… we suggest detailed reaction pathways initiated by ozone oxidation of squalene that results in primary and secondary ozonides…
Formation of Toxic Unsaturated Multifunctional and Organosulfur Compounds From the Photosensitized Processing of Fluorene and DMSO at the Air-Water Interface
Majda Mekic, Jiafa Zeng, Bin Jiang, Xue Li, Yannis G. Lazarou, Marcello Brigante, Hartmut Herrmann, Sasho Gligorovski
When aqueous solutions containing a mixture of fluorene (FL) and DMSO are irradiated with actinic radiation, a large suite of unsaturated high molecular weight compounds appear in the aqueous phase; a broad variety of saturated and unsaturated oxygenated multifunctional compounds are also observed in the gas phase, most of which are more toxic than FL
Identifying methicillin-resistant Staphylococcus aureus (MRSA) lung infections in mice via breath analysis using secondary electrospray ionization-mass spectrometry (SESI-MS)
J-C Wolf, M. Schaer, P. Siegenthaler, R. Zenobi
A novel active capillary dielectric barrier discharge plasma ionization (DBDI) technique for mass spectrometry is applied to the direct detection of thirteen chemical warfare related compounds, including sarin, and compared to secondary electrospray ionization (SESI) in terms of selectivity and sensitivity.