Profiling exhaled breath of smokers using mass spectrometry to identify a signature related to tobacco use for diagnostic perspectives
Chiara Veronese Francesco Segrado Riccardo Caldarella Roberto Boffi Rosaria Orlandi
Breath analysis for the identification of volatile organic compounds by mass spectrometry is a very innovative and non-invasive technology, which represents a great opportunity for an early and personalised diagnosis. In this pilot study we recruited a series of volunteers, smokers and non-smokers, characterized from the respiratory point of view, and profiled their exhaled breath through SESI- HRMS technology. The aim of the study is to identify a volatile molecular signature associated with tobacco use. The supervised analysis highlighted 32 features that discriminate the breath of smokers and non-smoker subjects, at the baseline. We therefore identified a volatile molecular signature closely related to tobacco smoke, which will be characterized in subsequent studies
Expanding metabolite coverage of real-time breath analysis by coupling a universal SESI source and a HRMS. A pilot study on tobacco smokers
M. T. Gaugg, D. Garcia Gomez, C. Barrios-Collado, G. Vidal-de-Miguel, M. Kohler, R. Zenobi and P. M-L Sinues
Coupling a SESI source and a HRMS (Orbitrap), the authors were able to identify exogenous compounds associated to smoking, as well as endogenous metabolites suggesting increased oxidative stress in smokers. According to the authors, most of these compounds correlated significantly with smoking frequency and allowed accurate discrimination of smokers and non-smokers.
Real-Time Chemical Analysis of E-Cigarette Aerosols by Means of Secondary Electrospray Ionization Mass Spectrometry
D. Garcia-Gomez, T. Gaisl, C. Barrios-Collado, Guillermo Vidal-de-Miguel, M. Kohler and R. Zenobi
Chemical analysis of aerosols collected from electronic cigarettes (ECs) has shown that these devices produce vapors that contain harmful and potentially harmful compounds. Conventional analytical methods used for the analysis of electronic cigarettes do not reflect the actual composition of the aerosols generated because they usually neglect the changes in the chemical composition that occur during the aerosol generation process and after collection.